Activated NF-jB in Bone Marrow Mesenchymal Stem Cells from Systemic Lupus Erythematosus Patients Inhibits Osteogenic Differentiation Through Downregulating Smad Signaling

نویسندگان

  • Yu Tang
  • Hao Xie
  • Jinyun Chen
  • Linyu Geng
  • Haifeng Chen
  • Xia Li
  • Yayi Hou
  • Liwei Lu
  • Songtao Shi
  • Xiaofeng Zeng
  • Lingyun Sun
چکیده

Osteoporosis in patients with systemic lupus erythematosus (SLE) is thought to be the result of accelerated osteoclastogenesis induced by pro-inflammatory cytokines such as tumor necrosis factor (TNF). However, the molecular mechanisms involved in the osteoblastogenesis in SLE patients are not fully understood. We investigated the bone morphogenetic protein-2 (BMP-2)-induced osteoblastic capacity of bone marrow-derived mesenchymal stem cells (BMMSCs) from SLE patients and the TNF signaling system in determining BMP-2-induced regulatory pathways. It showed that the capacity of osteogenic differentiation of BMMSCs from SLE patients was reduced compared with that from healthy controls. The nuclear factor kB (NF-kB) signaling was activated while the BMP/Smad pathway was repressed in BMMSCs from SLE patients. TNF activated NF-kB pathway and inhibited the phosphorylation of Smad 1/5/8 and BMP-2-induced osteoblastic differentiation in BMMSCs from normal controls, while addition of pyrollidine dithiocarbamate (PDTC), an NF-kB inhibitor, to SLE-BMMSCs could partially reverse these effects. Thus, our findings have shown that the activated NF-kB pathway in SLE-BMMSCs inhibits the BMP-2-induced osteoblastic differentiation through BMP/Smad signaling pathway, suggesting that the impaired osteoblastic differentiation may participate in the pathology of osteoporosis in SLE patients.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Activated NF-κB in bone marrow mesenchymal stem cells from systemic lupus erythematosus patients inhibits osteogenic differentiation through downregulating Smad signaling.

Osteoporosis in patients with systemic lupus erythematosus (SLE) is thought to be the result of accelerated osteoclastogenesis induced by pro-inflammatory cytokines such as tumor necrosis factor (TNF). However, the molecular mechanisms involved in the osteoblastogenesis in SLE patients are not fully understood. We investigated the bone morphogenetic protein-2 (BMP-2)-induced osteoblastic capaci...

متن کامل

Naringin enhances osteogenic differentiation through the activation of ERK signaling in human bone marrow mesenchymal stem cells

Objective(s): Naringin has been reported to regulate bone metabolism. However, its effect on osteogenesis remains unclear. The aim was to investigate the effect of naringin on osteogenic differentiation of human bone marrow mesenchymal stem cells (hBMSCs) through the activation of the ERK signaling pathway in osteogenic differentiation. Materials and Methods: Annexin V-FITC assay and MTT assay ...

متن کامل

Effect of Lithium Chloride on Proliferation and Bone Differentiation of Rat Marrow-Derived Mesenchymal Stem Cells in Culture

Objective(s) It is believed that the mesenchymal stem cell (MSC) differentiation and proliferation are the results of activation of wnt signaling pathway. On the other hand, lithium chloride is reported to be able to activate this pathway. The objective of this study was to investigate the effect of lithium on in vitro proliferation and bone differentiation of marrow-derived MSC. Materials and ...

متن کامل

Biological behaviors of muscarinic receptors in mesenchymal stem cells derived from human placenta and bone marrow

Objective(s): Cells perform their functional activities by communicating with each other through endogenous substances and receptors. Post-translation, stem cells function properly in new host tissue by carrying specific cell surface receptors. We aimed to characterize muscarinic receptor subtypes in mesenchymal stem cells (MSCs) together with osteogenic and adipogenic...

متن کامل

Osteogenic Differentiation of Rat Mesenchymal Stem Cells from Adipose Tissue in Comparison with Bone Marrow Mesenchymal Stem Cells: Melatonin As a Differentiation Factor

Background: Adipose-derived stem cells (ADSC) could be an appealing alternative to bone marrow stem cells (BMSC) for engineering cell-based osteoinductive grafts. Meanwhile, prior studies have demonstrated that melatonin can stimulate osteogenic differentiation. Therefore, we assayed and compared the melatonin effect on osteogenic differentiation of BMSC with that of ADSC. Methods: Mesenchymal...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013